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Abstract

This paper presents the experimental validation of a numerical model for the prediction of train induced vibrations. The

model fully accounts for the dynamic interaction between the train, the track and the soil. The track geometry is assumed to

be invariant with respect to the longitudinal direction, which allows for an efficient solution of the dynamic track–soil

interaction problem in the frequency–wavenumber domain. The model is validated by means of several experiments that

have been performed at the occasion of the homologation tests of the new HST track on the line L2 between Brussels and

Köln. A first set of experiments is used to determine the dynamic soil and track characteristics. In a second set of

experiments, the soil transfer functions, the track–soil transfer functions and the track and free field vibrations during the

passage of a Thalys high speed train have been measured. These results are used for a step-wise validation of the numerical

model that is based on the identified model parameters and allows to study the propagation of errors in the prediction model.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The development of the high speed train (HST) network in Europe, the USA and Asia has increased the
interest for ground-borne vibrations in the built environment. Ground-borne railway induced vibrations are
generated by a large number of excitation mechanisms. For HST tracks on soft soils, the train speed can be
close to or even larger than the critical phase velocity of the coupled track–soil system. In this case, the quasi-
static contribution of the load is important for both the track and the free field response. High vibration levels
and track displacements are obtained, affecting track stability and safety [1]. For the X2000 train, track
deformations upto 10mm have been reported at a site in Ledsgård along the West Coast Line in Sweden [2].
Kaynia et al. [3] and Madshus and Kaynia [4] have studied this problem by means of a model where the track
is represented by beam elements and the track impedance is coupled to a soil impedance that is calculated by
means of the disc Green’s functions for a horizontally layered half-space. The same problem has been studied
by Ekevid and Wiberg [5] who combine the finite element method and the scaled boundary element method.
Andersen and Nielsen [6] apply a boundary element method for the steady-state response of an elastic medium
in a moving frame of reference.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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In the case where the train speed is well below the wave velocities in the soil, however, the quasi-static
contribution to the free field response is small compared to the contribution of the dynamic axle loads. The
dynamic axle loads are generated by parametric excitation due to the discrete supports of the rails, transient
excitation due to rail joints and wheelflats and the excitation due to wheel and rail roughness and track
unevenness [7]. The interaction between the train and the track cannot be disregarded when calculating the
dynamic axle loads, as the resonance of the mass of the wheels or the entire vehicle against the stiffness of the
substructure is important [8].

The development of three-dimensional numerical models that account for the dynamic interaction between
the train, the track and the soil has recently received considerable attention. Sheng et al. [9,10] have modelled
the track–soil interaction by means of a model with an infinite layered beam on top of a layered half-space and
have coupled a train model to this track model [11,12]. Auersch [13] has coupled a finite element model for a
finite part of the track to a boundary element model for the soil. This model is used for the calculation of the
track compliance in the solution of the vehicle–track interaction problem. Metrikine et al. [14] have studied the
stability of a moving train bogie, modelled as a two degree of freedom system, which is coupled to a beam of
infinite length for the track and a homogeneous half-space model for the soil, following an approach proposed
by Metrikine and Popp [15].

The aim of the present paper is twofold. The first objective is to present a numerical model for the prediction
of railway induced vibrations [16,17]. This model is based on a prediction model for road traffic induced
vibrations [18,19], that has been validated by means of in situ experiments [20,21]. The model has been
elaborated in order to account for the dynamic interaction between the vehicle and the track by means of a
compliance formulation in the frame of reference that moves with the vehicle [22]. The railway track is
modelled as a longitudinally invariant system, and is assumed to be located at the surface of a horizontally
layered elastic half-space. The translational invariance of the problem geometry enables an efficient solution in
the frequency–wavenumber domain.

The second objective of the paper is to validate this numerical model by means of several experiments that
have been performed at the occasion of the homologation tests of the line L2 of the HST between Brussels and
Köln. These homologation tests have been performed with an IC train at a speed between 155.9 and 225.3 km/h
and a Thalys HST at a speed between 218.1 and 326.1 km/h.

A first set of experiments is used to identify the model parameters. The dynamic soil characteristics are
determined by means of seismic cone penetration tests (SCPT) and spectral analysis of surface waves (SASW)
tests. A rail receptance test is used for the determination of the dynamic track characteristics.

A second set of experiments is used to validate the results of the numerical model, using the identified model
parameters. The validation is performed in three steps with an increasing complexity and an increasing
number of input parameters:
(1)
 In the SASW tests [23,24], an impact force on a steel foundation is used to generate vibrations at the soil’s
surface. The phase of the cross-power spectrum of the response at different distances is subsequently used
to identify the experimental dispersion curve of the first surface wave. Next, the solution of an
optimization problem allows to determine the shear wave velocity profile of the site. During these tests, the
impact force has also been measured [25], which allows to determine the experimental transfer function
between the steel foundation and the free field. This transfer function is used to validate the results of the
numerical model.
(2)
 The measured transfer or mobility functions between the track and the free field [26] are compared to the
computed transfer functions, which depend on both the dynamic soil and track characteristics.
(3)
 The in situ vibration measurements during the passage of a Thalys HST at two speeds of 218 and 294 km/h
[27,28] are used to validate the numerical prediction of the sleeper response and the free field vibrations
during the passage of a train on an uneven track, accounting for dynamic train–track–soil interaction.
The experimental validation presented in the following is complementary to results presented by Sheng et al.
[11] and Auersch [13], as more emphasis goes here to the determination of the model parameters and the
validation of intermediate results.
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2. The numerical prediction model

2.1. The train– track interaction problem

The dynamic axle loads are determined by the dynamic interaction between the train, the track and the soil.
The dynamic train–track interaction problem is solved by means of a compliance formulation in the frame of
reference that moves with the vehicle [22]. In the following, the contact between the axles and the rails is
approximated as a point contact. When a perfect contact is assumed between the vehicle and the railway track,
the displacement vector ûc that contains the vehicle displacements at the vehicle–track contact points is equal
to the sum of the rail displacement ûr and the rail unevenness ûw=r:

ûc ¼ ûr þ ûw=r, (1)

where both the rail displacements ûr and the rail unevenness ûw=r are evaluated at a fixed position in the
moving frame of reference.

The vehicle is usually modelled as a multi-degree of freedom system, where the vehicle’s axles and body are
considered as rigid parts and the vehicle’s suspension is represented by spring and damper elements. The
vehicle’s equations of motion can be written in the following general form, making a distinction between the
displacements ûb of the body, ûa of the axles and ûc at the vehicle–track contact points:
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where S represents a dynamic stiffness matrix. SH
aa is the dynamic stiffness matrix that corresponds to the

Hertzian springs between the wheels and the rails. The solution of these equations of motion allows for the
computation of the vehicle’s compliance matrix Ĉ

v
that relates the displacements ûc to the vehicle–track

interaction forces ĝ:

ûc ¼ �Ĉ
v
ĝ. (3)

Each element Ĉ
v

kl of the vehicle’s compliance matrix represents the displacements at the contact point k due to
a unit impulse load at the contact point l.

In the following, it will be shown how, in the case of a longitudinally invariant track, the track
displacements ûr at the contact points between the vehicle and the track can be calculated in a similar way:

ûr ¼ Ĉ
t
ĝ. (4)

Each element Ĉ
t

kl of the track compliance matrix Ĉ
t
represents the track displacements at the time-dependent

position of the kth axle due to an impulsive load at the time-dependent position of the lth axle. The calculation
is based on the solution of the moving load problem in a moving frame of reference.

The introduction of Eqs. (3) and (4) in Eq. (1) yields the following system of equations:

Ĉ
v
þ Ĉ

t
h i

ĝ ¼ �ûw=r. (5)

This equation allows to compute, in the frequency domain, the vehicle–track interaction forces ĝ from the
track unevenness ûw=r as applied to the train’s axles.

The frequency content ûw=rðoÞ of the track unevenness is calculated from the wavenumber domain
representation ~uw=rðkyÞ of the unevenness uw=rðyÞ:

ûw=rðoÞ ¼
1

v
~uw=r �

o
v

� �
exp io

ya

v

� �
(6)

where the vector ya contains the initial positions yk of all axles k. The vector expðioya=vÞ includes the phase
difference between the excitation at different axles.
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2.2. The track– soil interaction problem

In this subsection, the equations of motion of the coupled track–soil system are solved for a vertical impulse
load at a fixed track position fxS; 0; zSg

T. The track is assumed to be located at the surface of a horizontally
layered half-space, with a geometry that is invariant in the longitudinal direction ey. The solution procedure
can be applied to continuously supported tracks (Fig. 1a), as well as to discretely supported tracks (Fig. 1b),
provided equivalent characteristics of the discrete track are calculated. Knothe and Grassie [29] have
investigated the track receptance of a discretely supported track and show how the rail receptance at a sleeper
and in between sleepers has a similar behaviour upto about 500Hz. Knothe and Wu [30] have compared the
track receptance for a discretely supported track and a continuously supported track and found similar results
upto 600Hz. Equivalent continuous track models therefore provide a reliable prediction of the track
receptance, but do not account for parametric excitation as the small spatial variation of the support stiffness
of the discretely supported track is disregarded.

In the following, the numerical model will be validated by means of experiments that have been performed
at a site in Lincent, along the line L2 of the new HST track between Brussels and Köln. The HST track at this
site is a classical ballasted track with a discrete support of the rails by sleepers. An equivalent continuous
model, as shown in Fig. 2, will be applied. Examples of models for continuous slab tracks can be found
elsewhere [31].

The rails are modelled as Euler–Bernoulli beams with a bending stiffness ErIr and a mass rrAr per unit
length. The rail displacements are denoted as ur1ðy; tÞ and ur2ðy; tÞ. The positions of the rail are determined by
l1 and l2.

The rail pads are modelled as continuous spring–damper connections. The rail pad stiffness krp and
damping coefficient crp of a single rail pad are used to calculate an equivalent stiffness krp ¼ krp=d and
damping coefficient crp ¼ crp=d in the continuous model, where d is the sleeper distance.

The sleepers are assumed to be rigid in the plane of the track cross section, so that the vertical sleeper
displacements along the track are determined by the vertical displacement uslðy; tÞ at the centre of gravity of
the sleeper and the rotation bslðy; tÞ about this centre. The sleepers are assumed not to contribute to the
Er Ir
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Fig. 1. Alternative models of a ballasted track.
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Fig. 2. Cross section of a ballasted track model.
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longitudinal stiffness of the track, so that they can be modelled as a uniformly distributed mass along the
track. The sleeper mass msl is used to calculate a uniformly distributed mass msl ¼ msl=d per unit length. The
width 2b of the track–soil interface is taken equal to the sleeper length lsl.

If the ballast bed is assumed to act as a set of distributed, independent linear springs and dampers, each
sleeper is only supported by that part of the ballast that is in contact with the sleeper. For reasons of stability,
the sleeper is usually only supported under the rails, so that the vertical spring stiffness kb per sleeper [N/m] is
calculated from the effective support length esl per rail, the sleeper width bsl and the ballast stiffness Kb [N/m3]
as 2eslbslKb. The smeared ballast stiffness kb [N/m2] is equal to kb=d. When viscous damping in the ballast bed
is accounted for, the ballast impedance equals kb þ iocb. In a similar way, the discrete support of the sleepers
and the effective width determine the part of the ballast mass that is coupled to the sleepers and to the soil.

The track–soil interface is assumed to be rigid in the plane of the track cross section. The vertical
displacements uszðx; y; tÞ at the track–soil interface S are therefore determined by the vertical displacement
usðy; tÞ at the centre of the track–soil interface and the rotation bsðy; tÞ about this centre:

uszðx; y; tÞ ¼ usðy; tÞ þ bsðy; tÞx ¼ /tðxÞaðy; tÞ on S, (7)

where /tðxÞ is the vector f1; xg that collects the displacement modes of the cross section, while the vector aðy; tÞ
collects the displacement usðy; tÞ and the rotation bsðy; tÞ, which can be interpreted as generalized degrees of
freedom.

The invariance of the geometry with respect to the longitudinal coordinate y allows to perform a Fourier
transformation of the coordinate y to the wavenumber ky. This results in a solution procedure in the
frequency–wavenumber domain, where the equations of motion of the coupled track–soil system can be
written in the following general form:

½ ~Ktr þ ~Ks�~utr ¼ ~ftr, (8)

where ~Ktr and ~Ks represent the track and the soil impedance matrices, respectively, while ~utr is the track
displacement vector and ~ftr is the force vector applied to the track. A tilde above a variable denotes its
representation in the frequency–wavenumber domain, so that the arguments ky and o are omitted. The
solution procedure has been originally proposed by Aubry et al. [32] and Clouteau et al. [22] to study the
interaction of an infinite beam with a horizontally layered elastic half-space in the frequency–wavenumber
domain.

The track displacement vector ~utr collects the track displacements and the generalized degrees of freedom ~a
of the track–soil interface S. In the present case of a ballast track, the vector ~utr equals f ~ur1; ~ur2; ~usl; ~bsl; ~us; ~bsg

T.
The track force vector ~ftr contains the forces applied at both rails and is equal to f ~f r1; ~f r2; 0; 0; 0; 0g

T.
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The track impedance matrix ~Ktr is further detailed as

~Ktr

¼

~Kr þ ~K rp 0 � ~K rp
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ð9Þ

where ~Kr denotes the rail impedance ErIrk
4
y � rrAro2 in the frequency–wavenumber domain and ~K rp is the

dynamic stiffness krp þ iocrp of the rail pads. The sleeper’s translational inertia ~K sl;b and rotational inertia ~K sl;t

are calculated from the mass per unit length msl as �mslo2 and �ðb2=3Þmslo2, respectively. The dynamic
stiffness ~Kb of the ballast in the vertical direction is equal to kb þ iocb. The rotational impedance equals
ðb2=3Þ ~Kb, assuming a uniform support of the ballast along the width 2b of the interface.

The weak formulation of the vertical equilibrium at the track–soil interface S allows to calculate the soil
impedance matrix ~Ks:

~Ksijðky;oÞ ¼
Z
S
fti
~tszðuscðftjÞÞdG,

where uscðftjÞ is the wavefield in the soil due to an imposed displacement ftj at the track–soil interface S in the
frequency–wavenumber domain. ~tszðuscðftjÞÞ is the vertical component of the soil tractions ~ts ¼ ~rsn on a
boundary with a unit outward normal n due to this scattered wavefield uscðftjÞ. In the present case, the soil
impedance matrix is equal to

~Ks ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ~Ks11 0

0 0 0 0 0 ~Ks22

2
6666666664

3
7777777775
.
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A boundary element method is used to calculate the soil tractions ~tszðuscðftjÞÞ at the track–soil interface,
assuming that the track is located at the soil’s surface [18,32]. The boundary element formulation is based on
the boundary integral equations in the frequency–wavenumber domain, using the Green’s functions of a
horizontally layered soil [33–35]. Each layer in the half-space model is characterized by its thickness d, the
dynamic soil characteristics E and n or the longitudinal and transversal wave velocities Cp and Cs, the material
density r and a material damping ratio bp and bs in volumetric and deviatoric deformation, respectively.

The solution of the track–soil interaction equation (8) provides the soil displacements f ~us; ~bsg
T at the

track–soil interface S, which allow for the computation of the soil tractions ~tszðx; ky; z ¼ 0;oÞ at this interface:

~tszðx; ky; z ¼ 0;oÞ ¼ ~tszðuscð/tÞÞ~a, (10)

where ~tszðuscð/tÞÞ collects the vertical component of the soil tractions due to the scattered wavefields in the soil.
The dynamic reciprocity theorem is used for the calculation of the track–soil transfer function ~hziðx; ky; z;oÞ:

~hziðx; ky; z;oÞ ¼
Z
S
~uG

ziðx� x0; ky; z;oÞ~tszðx
0; ky; z

0 ¼ 0;oÞdG, (11)

where ~uG
ziðx; ky; z;oÞ is the representation in the frequency–wavenumber domain of the Green’s function

uG
ziðx; y; z; tÞ of the soil that represents the displacement in the direction ei at a time t in a point fx; y; zgT due to

an impulse load dðtÞ in the vertical direction ez at the origin of the frame of reference.

2.3. The response to moving loads

In the fixed frame of reference, the distribution of n vertical axle loads on the coupled track–soil system is
written as the summation of the product of Dirac functions that determine the time-dependent position
fxS; yk þ vt; zSg

T and the time history gkðtÞ of the kth axle load:

Fðx; y; z; tÞ ¼
Xn

k¼1

dðx� xSÞdðy� yk � vtÞdðz� zSÞgkðtÞez, (12)

where yk is the initial position of the kth axle that moves with the train speed v along the y-axis and ez denotes
the vertical unit vector.

Accounting for the invariance of the track–soil system in the longitudinal y-direction, the Betti–Rayleigh
reciprocal theorem allows to derive the following expression for the response usiðx; y; z; tÞ at a point fx; y; zgT

due to the moving axle loads:

usiðx; y; z; tÞ ¼
Xn

k¼1

Z t

�1

gkðtÞhziðx; y� yk � vt; z; t� tÞdt. (13)

The response due to a moving load on the track can therefore be calculated from the response for a
concentrated impulse load at a fixed position fxS; 0; zSg

T on the track. A double forward Fourier
transformation allows to derive the following expression in the frequency–wavenumber domain:

~usiðx; ky; z;oÞ ¼
Xn

k¼1

ĝkðo� kyvÞ ~hziðx; ky; z;oÞ expðþikyykÞ. (14)

The frequency shift kyv between the circular frequency at the receiver and at the source corresponds to the
Doppler effect.

The frequency content ûsiðx; y; z;oÞ of the response is computed as the inverse wavenumber domain
transformation:

ûsiðx; y; z;oÞ ¼
1

2p

Xn

k¼1

Z þ1
�1

ĝkðo� kyvÞ ~hziðx; ky; z;oÞ exp½�ikyðy� ykÞ�dky. (15)

A change of variables according to ky ¼ ðo� ~oÞ=v moves the frequency shift from the frequency content of
the moving load to the wavenumber content of the transfer function:

ûsiðx; y; z;oÞ ¼
1

2pv

Xn

k¼1

Z þ1
�1

ĝkð ~oÞ ~hzi x;
o� ~o

v
; z;o

� �
exp �i

o� ~o
v

� �
ðy� ykÞ

� �
d ~o. (16)
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The response in the time domain is finally obtained as the inverse Fourier transform with respect to o.
Compared to Eq. (13), this approach offers the advantage that the transfer function is evaluated in the
frequency–wavenumber domain.

In the particular case where only the quasi-static contribution is considered, the axle load gk has a constant
value Tk in time and the frequency content ĝkð ~oÞ equals Tk2pdð ~oÞ. Eq. (16) can now be elaborated as follows:

ûsiðx; y; z;oÞ ¼
Xn

k¼1

Tk exp þi
o
v

yk

� � 1

v
~hzi x;

o
v
; z;o

� �
exp �i

o
v

y
� �� �

, (17)

where the factor between the square brackets is the response due to a single unit axle load with a speed v and
an initial position y ¼ 0. The factor in front represents a modulation of the frequency content that is
determined by the train composition and the train speed v.

2.4. The track compliance

In order to derive the expression for the track compliance matrix Ĉt in Eq. (4), a double inverse Fourier
transform of Eq. (14) is used to calculate the response in a moving frame of reference ðx; ŷ; z; tÞ, with
ŷ ¼ y� vt:

usiðx; ŷ; z; tÞ ¼
1

4p2

Z þ1
1

Z þ1
�1

ĝkðo� kyvÞ ~hziðx; ky; z;oÞ

� exp½�ikyðŷþ vt� ykÞ� expðþiotÞdky do. ð18Þ

Replacing the circular frequency o by ~oþ kyv leads to the following expression for the time history of the
response:

usiðx; ŷ; z; tÞ ¼
1

2p

Z þ1
�1

ûsiðx; ŷ; z;oÞ expðþi ~otÞd ~o, (19)

where ûsiðx; ŷ; z; ~oÞ is the frequency content of the response in the moving frame of reference:

ûsiðx; ŷ; z;oÞ ¼
1

2p

Z þ1
�1

ĝkð ~oÞ ~hziðx; ky; z; ~oþ kyvÞ exp½�ikyðŷ� ykÞ�dky (20)

This expression is now used to calculate the element Ĉ
t

lkð ~oÞ of the track compliance matrix from the rail
response ~urðx; ky; z; ~oÞ in the frequency–wavenumber domain as

Ĉ
t

lkð ~oÞ ¼
1

2p

Z þ1
�1

~urðx; ky; z; ~oþ kyvÞ exp½�ikyðyl � ykÞ�dky, (21)

which represents the Fourier transform of the track response at the time–dependent position of axle l due to a
unit impulse at axle k. The track compliance matrix Ĉt is not symmetric due to the motion of the contact
points [12].

3. The transfer functions in the free field

3.1. Determination of the dynamic soil characteristics

In order to determine the soil layering and the small strain dynamic soil characteristics, two SASW tests [25]
and five SCPT [36] have been performed at the test site, which is located on a field in Lincent along the HST
track Brussels–Köln.

The SASW method is a non-invasive geophysical prospection method to determine the dynamic shear
modulus of shallow soil layers that is based on the dispersive characteristics of surface waves in a layered
medium [23,24]. The SASW method involves an in situ experiment where vibrations are generated at the soil’s
surface. The response in the free field is used to determine the experimental dispersion curve which is
associated with the first surface wave. Next, an inverse problem is formulated as a nonlinear least-squares
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problem, where the shear wave velocity Cs and the thickness of the soil layers are determined so that the
difference between the experimental and the theoretical dispersion curve is minimized. This optimization
problem is solved for a horizontally layered half-space with an increasing number of layers until a satisfactory
agreement of both dispersion curves is obtained.

At the test site, two experimental set-ups have been used for the SASW tests [25]. In set-up 1, a mass of
110 kg is dropped from a height of 0.9m on a square steel foundation with a width of 0.7m and a mass of
480 kg. A dashpot is used to control the frequency content of the loading and to prevent rebound of the mass.
Three force sensors are installed immediately below the dashpot as to measure the impact force on the
foundation. In set-up 2, a larger impact mass of 550 kg falling from a height of 0.85m on a circular steel plate
has been used to generate a larger impact and surface waves with a longer wavelength.

Figs. 3a and b compare the experimental dispersion curve with the theoretical dispersion curve for both set-
ups. It is found that the site consists of a layer with a thickness of 3.0m and a shear wave velocity between 150
and 160m/s and a layer with a shear wave velocity between 250 and 280m/s [25]. The results of the SCPT tests
confirm these observations [36]. Further research is needed to derive reliable estimates of the material damping
ratio from these tests. In the following subsection, it is shown how a fit between the experimental and
numerical soil transfer functions has been used to estimate a value of 0.03 for the material damping ratio b of
all soil layers, both in deviatoric and volumetric deformation. Furthermore, a value of 1

3
has been assumed for

the Poisson’s ratio and a density r equal to 2000 kg/m3. Table 1 summarizes the dynamic soil characteristics of
the site in Lincent.
3.2. Validation of the transfer functions in the free field

As the determination of the dynamic soil characteristics only relies on the correspondence between the
experimental and theoretical dispersion curve of the first surface wave, the measured impact force and
response in the SASW test allows for an additional validation of the layered half-space model as presented in
Table 1. The experimental mobility function M̂zðoÞ is defined as the ratio between the measured free field
velocity and the impact force. The theoretical mobility function has been computed for the soil model in
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Fig. 3. Experimental dispersion points, fitted experimental dispersion curve (solid line) and theoretical dispersion curve for the case of

three layers on a half-space (dashed line) in (a) set-up 1 and (b) set-up 2.

Table 1

Dynamic soil characteristics

Layer d (m) Cs (m/s) Cp (m/s) E ð�106 N=m2Þ n r ðkg=m3Þ b

1 3 150 300 120 0.333 2000 0.03

2 1 280 560 418 0.333 2000 0.03
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Fig. 4. The experimental (grey line) and computed (black line) mobility between the foundation and the free field at a distance of: (a) 8m;

(b) 16m; (c) 24m; (d) 32m; and (e) 48m from the foundation.
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Table 1 using a subdomain formulation for dynamic soil–structure interaction [37,38]. The foundation is
modelled as a rigid plate, while the impedance of the soil is modelled with a boundary element formulation.

Fig. 4 compares the experimental and computed mobility at 8; 16; 24; 32, and 48m from the source. A fit of
the experimental and numerical results at large distances and high frequencies has been used to determine the
material damping ratio b of the soil layers in Table 1. The general agreement between both results is
acceptable. However, some discrepancy remains that cannot be explained by a wrong estimation of the
material damping ratio. A clear overestimation is found in the near field at distances between 8 and 24m and
frequencies higher than 50Hz, whereas these numerical results are relatively insensitive to the material
damping ratio. Furthermore, a cut-off frequency around 50Hz seems to be present in the experimental results
that cannot be explained by the theoretical model. Similar discrepancies between measured and computed soil
transfer functions have been reported by Auersch [39].
4. The transfer functions between the track and the free field

4.1. Determination of the dynamic track characteristics

The track in Lincent is a classical ballasted track with UIC 60 rails supported every 0.60m by rubber pads
on monoblock concrete sleepers. The rails are continuously welded and are fixed with a Pandrol E2039 rail
fastening system and supported by resilient studded rubber rail pads (type 5197) with a thickness of 11mm.
Each rail pad is preloaded with a clip toe load of about 20 kN per rail seat. The prestressed concrete
monoblock sleepers have a length lsl ¼ 2:50m, a width bsl ¼ 0:235m, a height hsl ¼ 0:205m (under the rail)
and a mass msl ¼ 300 kg. The track is supported by a porphyry ballast layer (calibre 25

50
, thickness d ¼ 0:35m)

and a limestone sub-ballast layer (thickness d ¼ 0:60m). The density of these ballast layers is 1700 kg/m3.
Below the ballast, the soil has been improved over a depth of 1.0m by means of lime.
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The track is modelled as a longitudinally invariant track, where the dynamic stiffness of the rail pads and
the mass of the sleepers are uniformly distributed along the track. It is assumed that the presence of the second
track does not influence the vibrations in the free field, so that a single track model can be applied. The width
of the track–soil interface in the model is 2.5m and corresponds to the length of the sleepers. As the dynamics
of the track are considered in a relatively low frequency range from 0 to 400Hz, the Euler–Bernoulli beam
theory can be applied to model the rails [29]. The rails have a bending stiffness ErIr ¼ 6:45� 106 Nm2 and a
mass per unit length rrAr ¼ 60:3 kg/m for each rail. The track gauge l2 � l1 is 1.435m. The distributed sleeper
mass per unit length msl equals 500 kg/m.

In the track model, the porphyry ballast layer with a height hb of 0.35m and a density rb of 1700 kg/m3 is
included. The equivalent ballast mass mb in the continuous model is calculated from the part of the ballast that
is in contact with the sleepers as rbhblslbsl=d. The dynamic stiffness kb and damping cb of the ballast and the
equivalent stiffness krp ¼ krp=d and damping crp ¼ crp=d of the rail pad are obtained by means of a rail
receptance test. For a correct identification of the track properties, it is important to apply a model that
accounts for dynamic track–soil interaction, which has an important influence on the dynamic track behaviour
upto 200Hz, as indicated by Knothe and Wu [30]. The soil characteristics in Table 1 are used to calculate the
soil impedance matrix ~Ks. The thickness of the top layer is decreased from 3 to 2m to simulate the fact that the
track is partially embedded in the soil. For the calculation of the rail receptance, Eq. (8) is solved with a track
force vector ~ftr equal to f1; 0; 0; 0; 0; 0g

T, that corresponds to a unit impulse loading on a single rail. The track
response ûtrðy;oÞ at an arbitrary position y along the track is obtained as the inverse wavenumber
transformation of the track displacement vector ~utrðky;oÞ. The track receptance corresponds to the response at
the point y ¼ 0 where the force is applied.

The unknown track characteristics fkrp; crp; kb; cbg
T are now determined by the solution of a nonlinear least-

squares optimization problem with a residual that is a function of the track characteristics. For the
determination of the dynamic stiffness of the ballast, the discrepancy between the experimental and computed
rail receptance is minimized in the frequency range between 50 and 200Hz. The experimental rail receptance
has been determined in loaded track conditions, by means of an excitation of the rail at a sleeper position. In
the calculation of the residual, only those experimental values with a coherence larger than 0.95 have been
considered. The ballast stiffness kb and damping cb are estimated as 1534:5� 106 N=m2 and 27:7� 103 Ns=m2,
respectively. This corresponds to a vertical ballast stiffness kb per sleeper of 920:7� 106 N=m and damping cb

of 16:6� 103 Ns=m. If the limited support area lslbsl of the sleeper is accounted for, this results in a ballast
stiffness Kb ¼ 1567� 106 N=m3 or a Young’s modulus Eb ¼ Kbhb ¼ 548:5� 106 N=m2.

Based on an updating of the rail receptance in a frequency range between 200 and 400Hz, the equivalent rail
pad stiffness krp is estimated as 255:7 � 106 N=m2, while a value of 22:5� 103 Ns=m2 is found for the rail pad
damping crp. This corresponds to a rail pad stiffness krp ¼ 153:4� 106 N=m, as for medium to stiff rail pads,
and a damping crp ¼ 13:5� 103 Ns=m.

4.2. Validation of the track receptance

Fig. 5a shows the final agreement between the modulus of the experimental and the numerical rail
receptance. The first peak near 25Hz falls below the range of frequencies considered in the inverse analysis and
is due to the soil stratification, where a relatively soft layer overlays a stiffer half-space. The peak near 350Hz
corresponds to the resonance of the rail on the rail pad and the ballast. This is the cut-on frequency of the
bending waves in the rail.

As only the modulus of the rail receptance has been used to define the residual in the least-squares
optimization problem, it is useful to verify the agreement between the phase of the experimental and numerical
rail receptance (Fig. 5b), as well as the response of the sleeper underneath the rail (Fig. 6). The most important
discrepancy is observed at very low frequencies, where the dynamic soil characteristics have a large influence
on the rail receptance [30]. The results seem to indicate an underestimation of the frequency at which the first
peak occurs. This could be due to fact that the presence of the sub-ballast layer and the improved soil
conditions are not accounted for in the numerical model. The overall trends, however, are well predicted and,
although only the modulus of the rail receptance has been used in the inverse analysis, a good agreement is
also obtained for the phase of the rail and the sleeper response.
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Fig. 5. The experimental (grey line) and computed (black line): (a) modulus and (b) phase of the rail receptance ûr1.
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the rail.
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4.3. Validation of the transfer functions between the track and the free field

Within the frame of the measurement campaign, the transfer functions between the track and the free field
have been obtained from several impacts of a falling weight [26]. These experimental results can now be used
to validate the numerical model.

For the calculation of the transfer functions between the track and the free field, the track force vector ~ftr is
equal to f1; 0; 0; 0; 0; 0gT, corresponding to a unit impulse excitation on a single rail. Eqs. (8) and (10) are used
to calculate the response at the track–soil interface and the soil tractions at the interface, respectively. Next,
the transfer functions between the track and the free field are calculated in the frequency–wavenumber domain
by means of Eq. (11). Since for the calculation of the track response, the thickness of the top layer has been
reduced from 3 to 2m, the tractions are now applied at a depth of 1m in the original soil model and the
response at the soil’s surface is calculated. An inverse Fourier transform from the wavenumber domain ky to
the spatial coordinate y allows to compute the free field velocities.

Fig. 7 compares the experimental and computed mobility functions at a distance of 8; 16; 24; 32; 48, and 64m
from the track. At all distances from the track, the response is overestimated. Compared to the validation of
the foundation–soil transfer functions in Fig. 4, however, a better agreement is obtained, as the experimental
and computed track-free field transfer functions show a similar frequency dependence. At 8 and 16m, the
response has a broad frequency content upto 150Hz, whereas at larger distances, the frequency content
becomes more concentrated at low frequencies, with a maximum around 20Hz. As for the validation of the
foundation–soil transfer functions in Fig. 4, the best agreement is obtained at larger distances from the track.
The fact that the agreement between experimental and computed results changes with the distance from the
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Fig. 7. The experimental (grey line) and computed (black line) mobility between the track and the free field at a distance of: (a) 8m; (b)

16m; (c) 24m; (d) 32m; (e) 48m; and (f) 64m from the track.
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track might be due to a wrong estimation of the material damping ratio that has a large influence in a broad
range of frequencies at large distances.

5. The track and free field response due to the passage of a Thalys HST

5.1. Determination of the train characteristics

The Thalys HST (Fig. 8) consists of two locomotives and eight carriages; the total length of the train is
equal to 200.18m. The locomotives are supported by two bogies and have four axles. The carriages next to the
locomotives share one bogie with the neighbouring carriage, while the six other carriages share both bogies
with neighbouring carriages. The total number of bogies equals 13 and, consequently, the number of axles on
the train is 26. The carriage length Lt, the distance Lb between bogies, the axle distance La, the total axle mass
Mt, the sprung axle mass Ms and the unsprung axle mass Mu of all carriages are summarized in Table 2.

In the following, this model will be used for the calculation of the sleeper response and the free field
vibrations during the passage of a Thalys HST at two train speeds of 218 and 294 km/h. First, the sleeper
response is considered. For this case, only the quasi-static contribution to the response is taken into account.
The quasi-static contribution depends only on the total axle mass Mt in Table 2. Second, the free field
vibrations are considered. Whereas the quasi-static contribution dominates the track response, this is no
longer the case for the free field response, as the train speeds are relatively low compared to the shear wave
velocity of 150m/s of the top layer. The quasi-static contribution is neglected and only the dynamic axle loads
are taken into account. The dynamic axle loads are calculated by means of Eq. (5) from the vehicle
compliance, the track compliance matrix in a moving frame of reference and the frequency content ûw=r of the
track unevenness. Furthermore, the interaction between the train and the track is discussed in more detail and
the need for a coupled train–track model is investigated. Finally, the dynamic axle loads are used to calculate
the vibrations during the passage of a Thalys HST and the experimental and computed results for the free field
response are discussed.
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Table 2

Geometrical and mass characteristics of the Thalys HST

Lt(m) Lb(m) La(m) Mt(kg) Ms(kg) Mu(kg)

Locomotives 22.15 14.00 3.00 17 000 14 937 2027

Side coach 21.84 18.70 3.00 17 000 14 937 2027

Central coach 18.70 18.70 3.00 17 000 14 937 2027
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5.2. Validation of the track response

Fig. 9a shows the frequency content of the experimental and computed velocity of the sleeper during the
passage of the Thalys HST at 294 km/h. Although the locomotives and the adjacent carriages have a different
axle composition than the six central carriages, a modulation of the frequency content is observed with peaks
at the fundamental bogie passage frequency f b ¼ v=Lb ¼ 4:4Hz of the central carriages and its higher
harmonics, modulated at the axle passage frequency f a ¼ v=La ¼ 27:2Hz [40]. An excellent agreement
between the experimental and computed results is obtained at low frequencies, while the experimental
response is slightly overestimated at frequencies between 20 and 60Hz and underestimated at higher
frequencies due to the neglection of the dynamic axle loads. The identification of the track characteristics in
loaded track conditions has shown to be crucial for a good prediction of the sleeper response.

Fig. 9b shows the time history of the experimental and computed velocity of the sleeper during the passage
of the Thalys HST at a speed v of 294 km/h. The passage of every axle can clearly be identified from the time
history of the response that shows a nearly uniform response for every axle load. A detailed inspection of the
experimental response reveals a more irregular time history, which is not present in the computed results due
to the fact that the dynamic component of the axle loads has been neglected in the calculation of the track
response.

Fig. 10 shows the time history and frequency content of the experimental and computed velocity of the
sleeper during the passage of the Thalys HST at a speed v of 218 km/h. Both the experimental and computed
results show how at this lower train speed, the frequency content has shifted to lower frequencies and the
maximum sleeper velocity has decreased.

5.3. Determination of the track unevenness

Shortly before the homologation tests, the Belgian Railway Company NMBS has used an EM-130 track
recording car to measure the initial track unevenness [41]. The measuring bandwidth of track recording cars is
generally restricted to wavelengths ranging from a few metres to 20 or 30m [42], as can be observed from the
transfer function of the EM-130 recording vehicle [41]. The measured power spectral density (PSD) function
[43] has therefore been fitted by the following PSD function in the range of wavelengths between 6 and 24m:

~Suw=r
ðkyÞ ¼ ~Suw=r

ðky0Þ
ky

ky0

� ��w

, (22)
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Fig. 10. The experimental (grey line) and computed (black line): (a) frequency content and (b) time history of the sleeper response during

the passage of the Thalys HST at a speed v of 218 km/h.
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Fig. 9. The experimental (grey line) and computed (black line): (a) frequency content and (b) time history of the sleeper response during

the passage of the Thalys HST at a speed v of 294 km/h.
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with ky0 ¼ 1 rad=m and w ¼ 3:5, as commonly assumed for railway unevenness. A value of 1:36� 10�8 m3 has
been found for ~Suw=r

ðky0Þ.
Fig. 11 shows the experimental PSD for the right rail of the HST track at the measurement site in Lincent,

as well as the fitted PSD function. Furthermore, an upper and a lower bound for the PSD functions of the rail
unevenness [43] have been added with a similar dependency on the wavenumber but different reference values
of 5� 10�7 and 1� 10�9 m3 for ~Suw=r

ðky0Þ, respectively.
At a train speed v of 294 km/h, the range of wavelengths where the PSD has been fit corresponds to an

excitation of the vehicle’s axles in the frequency range between 3 and 10Hz. All results for higher frequencies
are therefore based on extrapolated values of the fitted PSD. A complementary measurement, with a range of
wavelengths between 0.5 and 8m that corresponds to the excitation between 10 and 160Hz would therefore
have been more suitable for the prediction of the free field vibrations.

The PSD Ŝw=rðoÞ of the unevenness in the frequency domain is equal to 1=v ~Sw=rð�o=vÞ. Accounting for the
exponent w ¼ 3:5 in Eq. (22), the PSD in the frequency domain increases uniformly and proportional to v2:5.
An increasing train speed is therefore expected to give rise to higher dynamic axle loads and higher vibration
levels in the free field.

5.4. Dynamic behaviour of the coupled train– track system

The train–track interaction forces are calculated by means of Eq. (5) from the vehicle compliance matrix Ĉv,
the track compliance matrix Ĉt and the frequency content ûw=r of the track unevenness.
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At frequencies of more than a few Hertz [29], the vehicle’s primary and secondary suspension isolate
the body and the bogie from the wheelset. The vehicle’s unsprung mass is therefore the only component
that affects the vertical dynamic loads and can be satisfactorily represented as a rigid body [29]. Further-
more, the influence of the primary suspension is small at frequencies higher than 10Hz, so that each axle
can be modelled as a point mass Mu and the vehicle compliance matrix is equal to the diagonal matrix
Ĉ

v
¼ diagf�1=Muo2g of order 26.
The track compliance in a moving frame of reference is calculated from the rail impulse response in the

frequency–wavenumber domain using Eq. (21). As a 2D vehicle model is used, the train loads are distributed
equally on both rails and the rail impulse response is found from the solution of the track–soil interaction (8)
with a track force vector ~ftr equal to f0:5; 0:5; 0; 0; 0; 0g

T.
The influence of the train speed on the track compliance is shown in Fig. 12 where the modulus of the

diagonal elements of the track compliance matrix Ĉt is compared for train speeds of 294, 218 and 0 km/h. At a
zero train speed, the track compliance shows a similar behaviour as the track receptance in Fig. 5. The
difference between both is due to the fact that the impulse excitation is now applied on two rails instead of one.
The resonance frequency near 25Hz shifts to lower frequencies as the train speed increases, which is due to the
Doppler effect.

In order to investigate the behaviour of the coupled vehicle–track system, Eq. (5) is now solved for a vehicle
speed v of 294 km/h and a unit impulse excitation at the rear axle of the Thalys HST only. Fig. 13 shows
the vehicle and the track response at the position of the rear axle. For a unit impulse excitation at the rear axle,
the difference between the vehicle displacement ûc and the track displacement ûr at this axle, is equal to 1 in the
entire frequency domain. The coupled vehicle–track system behaves in a similar way as a single degree of
freedom (SDOF) sprung mass system, where a displacement is imposed between the mass and the spring.

At low frequencies, the inertia of the mass is relatively small, so that the displacement ûc of the mass is equal
to the imposed unit differential displacement and ûr ¼ 0, as observed in Fig. 13. The imaginary part that
corresponds to an out-of-phase response is small. At limiting high frequencies, the displacement of the mass
tends to zero, so that ûc ¼ 0 and the track displacement ûr ¼ �1. At the resonance frequency of the SDOF
system, the unit displacement is taken by the mass, while the imaginary part of both reaches a maximum. For
the coupled train–track system, this occurs at a frequency near 75Hz.

Sheng et al. [12] have recently studied the train–track interaction with a more elaborated single-axle vehicle
model that includes the suspended mass, and show that the influence of this suspended mass can be neglected.
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5.5. The train–track interaction forces

Eq. (5) is now used to compute the train–track interaction forces for a passage of the Thalys HST with a
speed of 294 km/h. The fitted PSD function in Fig. 11 is used to generate an artificial profile uw=rðyÞ as a
Gaussian random process that consists of a superposition of sine functions with random phase angles [44]. The
frequency content ûw=rðoÞ of the track unevenness in Eq. (5) is calculated from the wavenumber domain
representation ~uw=rðkyÞ of this profile uw=rðyÞ according to Eq. (6).

Fig. 14 shows the frequency content of the train–track interaction force at the front and rear axle of the
Thalys HST. The frequency content of these forces exhibits a clear maximum near the train–track resonance
frequency that has been observed in Fig. 13.

Fig. 15 shows the frequency content of the dynamic axle loads for a lower train speed of 218 km/h.
In Eq. (5), both the track compliance Ĉ

t
and the track unevenness ûw=r depend on the train speed. In the
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frequency range between 50 and 100Hz where the train–track resonance occurs, however, the effect of the
train speed on the track compliance is small (Fig. 12). The frequency content of the axle loads in this frequency
range therefore mainly depends on the train speed v through the frequency content of the track unevenness. As
the PSD Ŝw=rðoÞ increases proportional to v2:5, the generated track unevenness ûw=r increases with the train
speed proportional to v1:25. A decrease of the train speed from 294 to 218 km/h results in a decrease of 69% of
the frequency content of the axle loads, as observed in Figs. 14 and 15.

5.6. Validation of the free field response

The frequency content of the train–track interaction forces is used to compute the vibrations in the free field
during the passage of a Thalys HST at train speeds of 294 and 218 km/h.

As for the calculation of the track compliance, the results for the transfer functions between the track and
the free field are based on a solution of the equations of motion (8) of the coupled track–soil system with a
force vector ~ftr equal to f0:5; 0:5; 0; 0; 0; 0g

T.
The frequency content of the free field response is calculated by means of Eq. (16). Fig. 16 compares the

experimental and computed frequency content of the vertical free field velocity at 8; 16; 24; 32; 48, and 64m
from the track. Both the experimental and computed results show how the frequency content is mainly
situated in a range upto 100Hz, with a shift towards the lower frequencies for an increasing distance from the
track.

As indicated in the discussion on the track model, the assumption of a continuous track excludes the
parametric excitation due to the discrete support of the rails by the sleepers. The passage on the sleepers excites
the coupled track–train system at multiples of the sleeper passage frequency f sl ¼ v=d, which is equal to
136Hz for a train speed v of 81.7m/s and a sleeper distance d of 0.6m. Due to the Doppler effect, the first
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Fig. 16. The experimental (grey line) and computed (black line) frequency content of the vertical free field vibrations at a distance of: (a)

8m; (b) 16m; (c) 24m; (d) 32m; (e) 48m; and (f) 64m from the track during the passage of the Thalys HST at a speed v of 294 km/h.
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harmonic of the resulting axle load contributes to the response in a fixed point in the free field in a frequency
range between f sl=ð1þ v=CÞ and f sl=ð1� v=CÞ. For a Rayleigh wave velocity of 140m/s, as obtained with the
soil characteristics of the top layer, this corresponds to a frequency range between 86 and 327Hz. The sleeper
passage effect is not clearly observable in the measured free field velocities, however.

A clearer comparison of the experimental and computed frequency content is obtained by the one-third
octave band RMS spectra (Fig. 17) of the response. These spectra are computed according to the German
standard DIN 45672-2 [45] on a reference period T2, during which the response is considered to be stationary.
Superimposed on the one-third octave band spectra are the vibration criterion curves for sensitive equipment,
that are given here as a reference only. At small distances from the track, an underestimation at low
frequencies is observed due to the neglection of the quasi-static contribution to the free field response.
Furthermore, the frequency content is overestimated between 20 and 40Hz more severely than the track-free
field transfer functions in Fig. 7. At higher frequencies, a better agreement is obtained, with a slight
overestimation of the measured response. At larger distances of 32; 48, and 64m from the track, the
overestimation diminishes and a good agreement between the experimental and computed results is observed,
as for the track-free field transfer functions in Fig. 7.

Fig. 18 shows the time history of the free field velocity at a train speed of 294 km/h. At 8 and 16m from the
track, the passage of individual bogies can be identified. This is no longer the case at larger distances from the
track. In both the experimental and computed results, the duration of the response increases in a similar way.
When the amplitude of the experimental and computed free field vibrations are compared, the previous
observations are confirmed: at small distances from the track, the response is overestimated, while at larger
distances a better agreement is obtained.

Fig. 19 shows the frequency content of the vertical free field velocity at a train speed of 218 km/h. Compared
to the results at the higher train speed of 294 km/h (Fig. 16), the frequency content at low frequencies is much
lower. In the frequency range between 50 and 100Hz, where the train–track interaction occurs, a similar
reduction is observed as for the frequency content of the train–track interaction forces (Figs. 14 and 15). In the
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experimental results, a small contribution of the sleeper passage effect is observed around the sleeper passage
frequency f sl ¼ 101Hz.

Fig. 20 compares the one-third octave band RMS spectra of the computed and measured response at a train
speed of 218 km/h. A satisfactory agreement is obtained, with an overestimation of the measured response in
the frequency range between 20 and 40Hz.

Fig. 21 shows the time history of the vertical free field velocity at a train speed of 218 km/h. At small
distances from the track, both the experimental and the computed results show a lower vibration level for this
lower train speed. This effect is less pronounced for larger distances from the track.

6. Conclusion

In this paper, the experimental validation of a numerical model for the prediction of railway induced
vibrations has been presented. The model fully accounts for the dynamic interaction between the train, the
track and the soil by means of a compliance formulation in the moving frame of reference. The results
illustrate the importance of the coupling of the train and the track model in the frequency range of interest for
traffic induced vibrations in buildings.

An elaborate measurement campaign has been performed to validate the numerical model. The
measurement campaign consists of experiments that have been performed to identify model parameters and
experiments that are used to validate the numerical model. A SASW test and a track receptance test have been
used to determine the dynamic soil and track parameters. The transfer functions between a steel foundation
and the free field and between the track and the free field have subsequently been used to validate the
numerical model. The experimental and numerical track-free field transfer functions show a relatively good
agreement, although at small distances an overestimation of the experimental response is observed. Finally,
the sleeper response and the free field vibrations due to the passage of the Thalys HST have been predicted and
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validated for two train speeds. The step-wise validation allows to understand how errors propagate in the
prediction model. The results emphasize the crucial role of the dynamic soil properties.

Given the large number of modelling uncertainties, the numerical results of the free field vibrations show a
good agreement with the experimental results. Additional measurement campaigns, where more attention goes
to the train–track interaction, seem desirable in order to further validate and confirm the applicability of
numerical models for the prediction of railway induced vibrations.
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[35] E. Kausel, J.M. Roësset, Stiffness matrices for layered soils, Bulletin of the Seismological Society of America 71 (6) (1981) 1743–1761.

[36] W. Haegeman, In situ tests Retie–Waremme–Lincent, Report RUG IV.1.16.3, Soil Mechanics Laboratory, Ghent University, STWW

Programme Technology and Economy, Project IWT-000152, September 2001.

[37] D. Clouteau, Propagation d’ondes Dans des Milieux Hétérogènes. Application à La Tenue Des Ouvrages Sous Séismes, PhD Thesis,
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